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Key Points

• Imetelstat induces apo-
ptosis of MF but not
normal stem/progenitor
cells.

• Imetelstat is capable of
selectively depleting
MF stem/progenitor
cells.

Clinical trials of imetelstat therapy have indicated that this telomerase inhibitor might have

disease-modifying effects in a subset of patients with myelofibrosis (MF). The mechanism by

which imetelstat induces such clinical responses has not been clearly elucidated. Using in

vitro hematopoietic progenitor cell (HPC) assays and in vivo hematopoietic stem cell (HSC)

assays, we examined the effects of imetelstat on primary normal and MF HSCs/HPCs.

Treatment of CD341 cells with imetelstat reduced the numbers of MF but not cord blood

HPCs (colony-forming unit–granulocyte/macrophage, burst-forming unit–erythroid, and

colony-forming unit–granulocyte/erythroid/macrophage/megakaryocyte) as well as MF but

not normal CD341ALDH1 cells irrespective of the patient’s mutational status. Moreover,

imetelstat treatment resulted in depletion of mutated HPCs from JAK2V617F1 MF patients.

Furthermore, treatment of immunodeficient mice that had been previously transplanted

with MF splenic CD341 cells with imetelstat at a dose of 15 mg/kg, 3 times per week for

4 weeks had a limited effect on the degree of chimerism achieved by normal severe combined

immunodeficiency repopulating cells but resulted in a significant reduction in the degree of

humanMF cell chimerism aswell as the proportion of mutated donor cells. These effects were

sustained for at least 3 months after drug treatment was discontinued. These actions of

imetelstat on MF HSCs/HPCs were associated with inhibition of telomerase activity and the

induction of apoptosis. Our findings indicate that the effects of imetelstat therapy observed in

MF patients are likely attributable to the greater sensitivity of imetelstat against MF as

compared with normal HSCs/HPCs as well as the intensity of the imetelstat dose schedule.

Introduction

Primary myelofibrosis (PMF) as well as post essential thrombocythemia (ET) or polycythemia vera (PV)
related myelofibrosis (MF) are characterized by profound structural remodeling of the marrow,
megakaryocytic hyperplasia and dysplasia, marrow fibrosis, cytopenias, splenomegaly because of
extramedullary hematopoiesis, and disabling systemic symptoms. Advanced forms of each form of MF are
associated with limited survival. Approximately 90% MF patients harbor mutations in either JAK2 (58%),
calreticulin (CALR, 25%), or myeloproliferative leukemia virus oncogene (MPL, 7%), which each activate
JAK-STAT signaling.1-3 MF originates at the level of the hematopoietic stem cell (HSC).4 Except for
allogeneic HSC transplantation, however, currently available therapies including the JAK1/2 inhibitor
ruxolitinib do not eliminate MF HSCs.

Telomerase is a ribonuclear protein complex made up of a reverse transcriptase catalytic protein subunit
(human telomerase reverse transcriptase [hTERT]), an RNA template (hTR), and additional specialized
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proteins (eg, dyskerin) that act in concert to extend the length of
telomeres.5-7 Telomerase is transiently activated in normal stem and
progenitor cells but is inactive in mature somatic cells that make up the
vast majority of human tissues. Telomerase has, however, been shown
to be activated in most cancer cells, irrespective of tumor type.8,9

Imetelstat is a 13-mer oligonucleotide complimentary to the template
region of the telomerase RNA component. It binds with high affinity to
the template region of the RNA component of telomerase, resulting in
direct, competitive inhibition of telomerase enzymatic activity. Pre-
clinical studies have indicated that imetelstat inhibits telomerase
activity (TA) and cell proliferation of several cancer cell lines and
human tumors in mouse xenograft models.10-17 Moreover, imetelstat
also inhibits proliferation and induces apoptosis of cancer stem
cells.18,19 Imetelstat has been evaluated in phase 1 and 1/2 clinical
trials in patients with solid tumors (eg, breast and lung cancer)20,21

and hematologic malignancies (eg, chronic lymphoproliferative
diseases,22 refractory and relapsed multiple myeloma,23 and
myeloproliferative neoplasms [MPN]).24,25 Although in the majority
of these studies imetelstat has failed to show meaningful clinical
activity, phase 2 studies have demonstrated that imetelstat can
elicit hematologic and molecular responses in patients with ET
who are intolerant or unresponsive to prior standard therapies.24

Moreover, an additional clinical trial in MF patients revealed that
imetelstat therapy could achieve complete clinical remissions in
some patients using well-established clinical criteria.25 Treatment
with imetelstat led to the reversal of bone marrow (BM) fibrosis
and induction of morphologic and molecular remissions in some
patients with MF.25 These results suggest that imetelstat has
disease-modifying activity. The precise mechanism by which imetel-
stat induces such responses in MPN patients has been poorly
defined to date. In this report, we investigated whether imetelstat
selectively targets MF HSCs and hematopoietic progenitor cells
(HPCs).

Materials and methods

Drugs

Imetelstat sodium (GRN163L) is a 59 palmitoylated 13-mer
thiophosphoramidate oligonucleotide composed of the sequence
59‐TAGGGTTAGACAA‐39. Mismatched oligonucleotide (MM) is
a 59 palmitoylated 13‐mer thiophosphoramidate oligonucleotide
composed of the sequence 59‐TAGGTGTAAGCAA‐39. Both
compounds were provided initially by Geron Corporation (Menlo
Park, CA) and subsequently by Janssen Research & Development
LLC (Raritan, NJ).

Patient specimens and cell preparation

All patients signed informed consents approved by the Institutional
Review Board of the Icahn School of Medicine at Mount Sinai
(ISMMS). Single-cell suspensions were prepared according to
the method of Barosi et al26 from the surgically removed spleens of
13 patients (supplemental Table 1, patients [Pts] 1-10, 16-18) with
advanced forms of MF requiring therapeutic splenectomy. The
characteristics of these patients and their clinical outcomes have
been previously reported.27 peripheral blood (PB) was collected from
5 patients (supplemental Table 1, Pts 11-15) with PMF or PV/ET-
related MF who fulfilled World Health Organization diagnostic
criteria.28 The JAK2, CALR, and MPL mutational status1,29-31 of
each of these patients is shown in supplemental Table 1. Cord
blood (CB) collections were provided by the New York Blood

Center. CD341 cells were selected from mononuclear cells using
a CD341 cell selection kit (StemCell Technologies, Vancouver,
BC, Canada). CD341 cells with a purity of $90% as analyzed
using a FACSCanto Flow Cytometer (BD, Franklin Lakes, NJ)
were used in each experiment.

Treatment of MF and normal CD341 cells

with imetelstat

MF or CBCD341 cells (2.53 104/mL) were incubated in serum free
expansion medium (StemCell Technologies) supplemented with
50 ng/mL stem cell factor, 100 ng/mL FLT-3 ligand, 100 ng/mL
thrombopoietin, and 50 ng/mL interleukin-3 (Gemini Bio-Products,
West Sacramento, CA) in the presence of imetelstat or MM (1.8 mM,
3.75 mM, 7.5 mM) or vehicle alone. Seven days after the treatment,
the numbers of cells were enumerated and stained with CD34 and a
lineage cocktail monoclonal antibodies (mAbs). Moreover, aldehyde
dehydrogenase (ALDH) activity of cells harvested was assessed
using an Aldefluor kit (StemCell Technologies) according to the
manufacturer’s recommendations, followed by staining with a CD34
mAb. All antibodies were purchased from Becton Dickinson (BD)
Biosciences (San Diego, CA). Data were acquired using a
FACSCanto II Flow Cytometer (BD). Two days after the treatment
with imetelstat or MM (7.5 mM), the percentage of CD341 cells
undergoing apoptosis was determined as previously described.32

HPC assays

A fraction of cells harvested from the previous cultures were also
analyzed in methylcellulose to which a cytokine cocktail was added
according to the manufacturer’s instructions (StemCell Technolo-
gies). The numbers of colonies were enumerated after 12 to
14 days of incubation. Individual colony-forming unit–granulocyte/
macrophage (CFU-GM) colonies (14-31 colonies per treatment
group per patient) were plucked and analyzed for the presence
of JAK2V617F using a nested allele-specific polymerase chain
reaction (PCR).33 The percentage of JAK2V617F1 CFU-GM was
then determined.

Treating NOD/SCID/IL2Rgnull (NSG) mice

transplanted with normal or MF splenic CD34
1
cells

directly with vehicle alone, MM, or imetelstat

NSG mice were purchased from The Jackson Laboratory (Bar
Harbor, ME). All experiments were approved by the Animal Care
Committee of ISMMS. Initially, in order to identify the dose of
imetelstat that was tolerated by NSGmice and that minimally affected
the behavior of normal CD341 cells, CB CD341 cells from 8 to 10
donors were pooled and were transplanted (53 105 per mouse) via
the tail vein into 8- to 9-week-old sublethally irradiated (240 cGy)
NSG mice. These mice were then injected a week after trans-
plantation intraperitoneally with 5, 15, and 30 mg/kg of imetelstat or
MM thrice weekly for 4 to 8 weeks. Two to 3 months after the
discontinuation of imetelstat or MM administration, the mice were
euthanized and the cells were recovered from the BM of the femurs,
tibias, and humeri. The presence of human (h) CD451, CD141,
CD331, CD41a1, CD191, CD31, and CD341 cells was determined
by mAb staining and flow cytometric analysis.

In order to examine the effects of imetelstat on MF HSCs, MF splenic
CD341 cells (3 3 105 to 5 3 105 per mouse, n 5 3) that had
previously been shown to achieve significant degrees of human cell
chimerism 4 months after their transplantation into NSG mice were
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used. CD341 cells from these spleens were transplanted into NSG
mice and after a week were treated with imetelstat or MM at the dose
of 15 mg/kg for 4 weeks. Three months after the discontinuation of
drug treatment, the presence of cells belonging to various human
hematopoietic cell lineages in the BMs of recipient mice was
quantitated as described previously. In addition, the hCD451 cells in
the BM of the recipient mice were selected using a FACSAria cell
sorters (BD). The percentage of JAK2V617F/JAK2total present in the
genomic DNA of selected hCD451 cells from the mice receiving
splenic CD341 cells from a patient with a granulocyte JAK2V617F
allele burden of 85.1% was determined using a quantitative real-time
(RT)–PCR with an allelic discrimination method.30,31 We considered
human engraftment to have occurred in NSG mice if hCD451 cells
were present at $0.1% of the nucleated cells in murine BM.

TA assays and telomere length analysis

A quantitative telomerase detection kit (QDT, Allied Biotech, Inc.,
Benicia, CA) was used to measure TA according to the

manufacturer’s instructions which were detailed in the supplemental
Methods. For analysis of telomere length, a flow-fluorescence in situ
hybridization (Flow-FISH) was performed with a Telomere PNA
Kit/FITC for Flow Cytometry (Agilent, Santa Clara, CA) (see
supplemental Methods).

Statistical analysis

Results are reported as the mean 6 standard deviation. Statistical
significance was determined using a 2-tailed Student t test. AllP values
were 2 sided, and P , .05 was considered significant.

Results

Imetelstat inhibits the proliferation and

differentiation of MF but not normal CD341 cells

Similar numbers of Lin2CD341 cells (Figure 1A) and assayable HPCs
(CFU-GM 1 burst-forming unit–erythroid [BFU-E] 1 colony-forming
unit–granulocyte/erythroid/macrophage/megakaryocyte [CFU-GEMM];
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Figure 1. Imetelstat inhibits the proliferation of MF stem and

progenitor cells but has limited effects on their normal

counterparts. Normal CB (A-C) or MF (D-F) CD341 cells were

treated with cytokines alone or cytokines plus increasing doses of an

MM or imetelstat (Ime) for 7 days. Cells generated were phenotypi-

cally characterized and were assayed for HPCs. The percentage of

the absolute number of Lin2CD341 cells (A,D), all classes of

assayable HPCs (B,E), as well as CD341 cells with ALDH activity (C,F)

generated in the cultures of normal or MF CD341 cells exposed to

cytokines plus MM or cytokines plus Ime relative to that generated in

the cultures exposed to cytokines alone are shown. CB: 1.8 mM and

3.75 mM: n 5 4; 7.5 mM: n 5 6. P all . .05, MM vs Ime at each

dose. MF: *P , .05, **P , .01, ***P , .001, MM vs Ime. n 5 14

(9 splenic MF and 5 PB MF).
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Figure 1B) were generated when CB CD341 cells were cultured
for 7 days with cytokines alone or cytokines plus increasing doses
of either imetelstat or MM (1.8 mM, 3.75 mM, 7.5 mM) (P all . .05).
We also assessed the effect of imetelstat on normal CD341 cells
expressing ALDH activity. ALDH activity was used as a surrogate
marker for primitive HSCs.34-37As shown in Figure 1C, similar
numbers of CD341 cells expressing ALDH activity were produced
under each of the culture conditions evaluated. By contrast, the
treatment of MF CD341 cells with 7.5 mM imetelstat led to a
significant reduction in the numbers of Lin2CD341 cells, HPCs
(CFU-GM 1 BFU-E 1 CFU-GEMM) and CD341ALDH1 cells as
compared with MF cells treated with an equal dose of MM
(Figure 1D-F). These findings suggest that MF CD341 cells are
more sensitive to the inhibitory actions of imetelstat than normal
CD341 cells.

Inhibitory effects of imetelstat on MF CD341 cells

are independent of JAK2V617F or CALR
mutational status

Tefferi et al25 suggested that the clinical response to imetelstat
therapy occurred exclusively in MF patients who were JAK2V617F1.
We, however, demonstrated that the inhibitory effects of imetelstat
in vitro were independent of the MF patient’s driver mutational
status (supplemental Figure 1).

Effect of imetelstat treatment on malignant MF HPCs

To assess the effect of imetelstat on malignant MF HPCs, individual
colonies cloned from cells generated from CD341 cells from
6 individual JAK2V617F1 MF patients (JAK2V617F allele burden:
25% to 90%) treated with cytokines alone or cytokines plus
imetelstat or MM (7.5 mM) were plucked and genotyped. Imetelstat
treatment did not affect the percentage of JAK2V617F1 colonies
generated when 100% of the colonies contained the mutated form
of JAK2 (Table 1). In 3 of 4 patients, however, who had a reservoir of
wild-type JAK2 colonies prior to treatment, exposure to imetelstat
reduced the percentage of total JAK2V617F1colonies and homo-
zygous JAK2V617F1 colonies (Table 1). Moreover, imetelstat
treatment reduced the absolute number of total JAK2V617F1 colonies
by 45.8 6 22.5% (P 5 .08) and the absolute number of homozygous
JAK2V617F1 colonies by 53.6 6 19.3% (P , .05) (Figure 2). These
data suggest that imetelstat treatment is capable of depleting
malignant HPCs from a subset of JAK2V617F1 MF patients.

Effects of treatment with imetelstat on normal NSG

repopulating cells (SRCs)

We next examined the effect of imetelstat on normal HSCs by
directly treating NSG mice transplanted with CB CD341 cells
with vehicle alone, imetelstat, or MM 1-week posttransplantation.
In Figure 3A, representative FACS plots showing hCD451 and
hCD341 cells generated in the marrow of recipient mice receiving
the same CB graft treated with vehicle alone, imetelstat, or MM
each at 15 mg/kg are shown. To more accurately assess the effect
of imetelstat on normal HSCs, we calculated the absolute number
of hCD451 and hCD341 cells present in the marrow of the
recipient mice by multiplying the total number of marrow cells
harvested from 2 tibias, 2 femurs, and 2 humeri by the percentage
of hCD451 and hCD341 cells detected, respectively. As shown
in Figure 3B, 3 months after the completion of the 4 weeks of
treatment, the mice transplanted with CB CD341 cells and treated

Table 1. Effect of imetelstat on genotype of hematopoietic colonies (CFU-GM) assayed from MF CD34
1
cells

Cytokines 1 vehicle Cytokines 1 MM (7.5 mM) Cytokines 1 Ime (7.5 mM)

% JAK2V617F % Homozygous JAK2V617F % JAK2V617F % Homozygous JAK2V617F % JAK2V617F % Homozygous JAK2V617F

Pt 5 38 (6/16)* 31 (5/16) 56 (15/27) 52 (14/27) 9 (2/23) 0 (0/23)

Pt 6 100 (27/27) 89 (24/27) 100 (22/22) 82 (18/22) 100 (30/30) 97 (29/30)

Pt 7 64 (9/14) 36 (5/14) 72 (13/18) 22 (4/18) 60 (12/20) 20 (4/20)

Pt 8 100 (20/20) 80 (16/20) 100 (21/21) 90 (19/21) 100 (11/11) 73 (8/11)

Pt 12 63 (19/30) 37 (11/30) 80 (20/25) 56 (14/25) 82 (25/31) 39 (12/31)

Pt 13 96 (25/26) 81 (21/26) 86 (19/22) 68 (15/22) 70 (14/20) 50 (10/20)

Individual colonies (CFU-GM) from 6 JAK2V617F1 MF patients (JAK2V617F allele burden: 25%-90%) treated with cytokines alone or cytokines plus imetelstat or MM (7.5 mM) were
plucked and genotyped for the JAK2V617F. In 3 of 4 patients (Pts 5, 7, 12, 13) having a reservoir of wild-type JAK2, imetelstat treatment reduced the percent of JAK2V617F 1 colonies and
percent of homozygous JAK2V617F 1 colonies generated.
*The numbers in parentheses denote the actual number of total JAK2V617F1 or homozygous JAK2V617F1 CFU-GM/the total numbers of CFU-GM plucked and genotyped.

120
&

Ab
so

lut
e 

No
. o

f h
em

at
op

oie
tic

 c
olo

nie
s

(%
 o

f M
M)

100

80

60

40

20

JAK2V617F + Homozygous
JAK2V617F +

0

*

MM 7.5um

Ime 7.5um

Figure 2. Imetelstat treatment leads to depletion of malignant HPCs. The

absolute number of total JAK2V617F1 and homozygous JAK2V617F1 CFU-GM

was calculated by multiplying the total number of CFU-GM by the fraction of

JAK2V617F1 or homozygous JAK2V617F1 CFU-GM (Table 1) generated in

cultures of JAK2V617F1 splenic or PB MF CD341 cells treated with cytokines

alone or cytokines plus MM or Ime (7.5 mM) for 7 days. The percentage of the

absolute number of total JAK2V617F1 and homozygous JAK2V617F1 CFU-GM

generated in cultures of treated with cytokines plus Ime relative to that generated in

cultures treated with cytokines plus MM is shown. n 5 4. &P 5 .08, *P 5 .03.
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with MM at each dose tested did not exhibit a decrease in
the degree of hCD451 marrow cell chimerism. However, treat-
ment with 15 mg/kg imetelstat led to a modest reduction in
the number of hCD451 cells (20.9 6 20.4% vs vehicle alone;
40.4 6 28.7% vs MM). A slightly greater reduction was associated
with the 30 mg/kg dose of imetelstat administration. The numbers
of hCD341 cells were only reduced in mice treated with imetelstat
at the highest dose studied (30 mg/kg) (10.8 6 7.0% vs the
equal dose of MM and 38.0 6 9.7% vs vehicle alone) (Figure 3C).
These findings indicate that imetelstat treatment can affect normal
hematopoiesis in a dose-dependent fashion. In addition, as shown
in supplemental Figure 2, the absolute number of hCD451CD41a1

megakaryocytes in the mice receiving 30 mg/kg imetelstat was
reduced by 50.0% to 78.7% and 18.2% to 42.0% as compared
with mice receiving vehicle alone and the same dose of MM in 2
of the 3 normal CD341 cell samples transplanted, respectively.
We next assessed whether prolonged treatment with imetelstat
would lead to greater inhibition of normal HSCs. Treatment of
the mice transplanted with normal CD341 cells with 15 mg/kg
imetelstat for 8 weeks resulted in a 15.4 6 6.6% reduction in the
number of hCD341 cells, which was not observed after 4 weeks
of treatment (Figure 3E). Additionally, a greater reduction in the

degree of hCD451 cell chimerism and the number of hCD341

cells was not observed with more prolonged treatment with
the 30 mg/kg imetelstat dose (Figure 3D-E). The higher doses
of imetelstat, however, led to a 9.0% to 15.6% reduction in
body weight, which started as early as 3 days after the
treatment (supplemental Figure 3). Moreover, prolonged treat-
ment with higher doses of either imetelstat or MM (30 mg/kg) was
associated with a significant reduction in spleen weights at
the time the mice were euthanized as compared with the spleens
from mice treated with vehicle alone (supplemental Figure 5).
In order to limit the effects of imetelstat on the normal HSCs
and the adverse effects on the recipient mice observed with
the higher doses of the drug, we chose the 4 weeks, 15 mg/kg
dose of imetelstat to treat mice transplanted with MF CD341

cells.

Inhibitory effects of imetelstat treatment on MF SRCs

We next examined the effect of treatment with imetelstat at the dose
of 15 mg/kg on MF HSCs for 4 weeks. As shown in Figure 4A,
3 months after the administration of imetelstat, the degree of hCD451

cell chimerism in the marrow of recipient mice transplanted with
splenic CD341 cells isolated from Pt 5 was reduced as compared
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Figure 3. Imetelstat treatment has modest effects on normal SRCs. (A) Representative fluorescence-activated cell sorter (FACS) plots showing hCD45 cell chimerism

and hCD341 cells generated in the marrow of NSG mice receiving the same CB CD341 cells treated with vehicle alone, MM, or Ime (15 mg/kg). (B-E) The absolute number

of hCD451 and hCD341 cells generated in the marrow of NSG mice 4 months after the transplantation of normal CB CD341 cells. One week after the transplantation, the

recipient mice were treated with vehicle alone, MM (5-30 mg/kg), or Ime (5-30 mg/kg) for 4 weeks (B-C) or 8 weeks (D-E). The absolute number of hCD451 and hCD341

cells was calculated by multiplying the total number of marrow cells (cells harvested from 2 tibias, 2 femurs and 2 humeri) by the percent of hCD451 and hCD341 cells,

respectively. The data were presented as the percentage of the absolute number of hCD451 and hCD341 cells present in the marrow of recipient mice treated with MM or

Ime relative to that detected in the mice treated with vehicle alone. Three samples of pooled CD341 cells from 8 to 10 CB donors were transplanted. P all . .05, MM vs Ime

at each dose. Two independent experiments were performed for each sample.
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with treatment with MM or vehicle alone. Moreover, depletion of
hCD341 cell numbers was also achieved with imetelstat treatment
(Figure 4A). As shown in Figure 4B, imetelstat treatment resulted in a
significant reduction in the absolute number of hCD451 cells in the
marrow of mice transplanted with cells from each of 3 patients studied
(P , .05, Ime vs MM; P , .001, Ime vs vehicle alone). A reduction in
the absolute number of hCD341 cells in transplantedmice treated with
imetelstat was also observed (Figure 4C; P 5 .14, Ime vs MM;
P , .001, Ime vs vehicle alone). Such treatment only resulted in a
modest reduction in body weight of mice receiving splenic CD341

cells in 1 of the 3 patients studied (supplemental Figure 4).
Furthermore, only BMCs from primary recipient mice transplanted
with the sameMF grafts that were treated alone with vehicle alone or
MM but not imetelstat were capable of reconstituting donor
derived hematopoiesis in the secondary recipient NSG mice
(Figure 4D-E), indicating that that MF HSCs were eliminated for a
sustained period of time by in vivo imetelstat treatment. Furthermore,
imetelstat treatment decreased the JAK2V617F allele burden of

hCD451 cells isolated from the marrow of primary recipient mice
receiving grafts from Pt 8 who was JAK2V617F1 (JAK2V617F allele
burden: vehicle alone: 95.3%, MM: 68.9%, Imetelstat: 43.3%).
These data suggest that imetelstat is capable of selectively
eliminating MF HSCs but sparing their normal counterpart. In the
other 2 patients studied there were not identifiable mutations
available to assess the effects of imetelstat on the mutant allele
burden.

Mechanisms underlying the inhibitory effects of

imetelstat treatment on MF CD341 cells

Telomerase expression and activity of normal and
splenic MF CD341 cells. Because the proposed direct
cellular target of imetelstat is telomerase, we assessed if on-
target effects were actually responsible for the observed effects
of imetelstat on MF HSCs/HPCs. As shown in Figure 5A-B,
hTERT was expressed at similar levels in primary MF splenic and
normal CD341 cells. As the enzymatic activity of telomerase
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reconstitute the secondary recipient NSG mice. BMCs, BM cells.
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depends on both hTERT and its RNA template component, we
used a PCR-based assay to measure TA in primary MF splenic
and normal CD341 cells. A difference in TA between MF and
normal CD341 cells was not observed (Figure 5C). However,
telomere length analysis using Flow-FISH revealed that normal
HSCs (CD341CD382) and more differentiated progenitors
(CD341CD381) had longer telomeres than the corresponding

MF cell populations (Figure 5D). We next evaluated TA present in
MF and normal CD341 cells following exposure to imetelstat or
MM and showed that treatment with imetelstat alone resulted in
a significant decrease in TA in MF (Figure 5E) but not normal
CD341 cells (Figure 5F) relative to treatment with MM, indicating
that the inhibitory effect of imetelstat on MF HSCs/HPCs was
mediated by the inhibition of TA.
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Figure 5. Telomerase expression and activity of normal and

splenic MF CD341 cells. (A) The protein level of hTERT in primary

splenic MF and normal CD341 cells was determined by western

blotting with an antibody raised against the hTERT. (B) Densitometric

analysis of western blots as represented by panel A shows a similar

level of hTERT in primary MF splenic and normal CD341 cells.

MF: n 5 5; CB: n 5 3. P . .05, MF vs CB. (C) RT-PCR–based assay

for TA in primary splenic MF and normal CB CD341 cells. The higher

the Ct value indicates the lower the TA. MF: n 5 8; CB: n 5 3.

P . .05, MF vs CB. (D) Flow-FISH analysis of telomere length of

primary splenic MF and normal CB CD341, CD341CD382 and

CD341CD381 cells. The higher telomere fluorescence intensity, the

longer telomere. MF: n 5 7; CB: n 5 4. ***P 5 .001, **P , .01,

^P 5 .19. (E-F) RT-PCR–based assay for TA in splenic MF (E)

and normal (F) CD341 cells following the treatment with MM or

Ime (7.5 mM) for 7 days. The treatment of MF splenic but not CB

CD341 cells with Ime resulted in a decrease in TA as com-

pared with the treatment with MM. MF and CB: n both 5 6.

MF: P , .05; CB: P 5 .87, MM vs Ime.
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Imetelstat induces apoptosis of MF but not normal
CD341 cells. We next evaluated the functional consequences of
telomerase inhibition in MF CD341 cells. As shown in Figure 6B-C,
imetelstat treatment did not induce apoptosis of CB CD341 cells.
By contrast, as shown in Figure 6E, 2 days after the treatment of
MF CD341 cells with the same dose of imetelstat, the percentage
of MF CD341 annexin V1 PI2 cells was significantly greater than
the percentage of cells treated with MM or cytokines alone
(P both,.01). The absolute number of CD341 annexin V1 PI2 cells
present in imetelstat containing cultures was 3.4 6 1.0- and 5 6
1.4-fold greater than in cultures treated with MM or cytokines alone,
respectively (Figure 6F).

Discussion

Small-molecule inhibitors of JAK1/2 are routinely used to treat MF
patients, resulting in dramatic improvement in systemic symptoms
and reduction in the degree of splenomegaly without significantly
affecting the JAK2V617 allele burden, BM histology, or reducing
the risk of transformation to acute myelogenous leukemia (AML).38,39

Several JAK 1/2 inhibitors have been reported to be capable of
inhibiting but not eliminating JAK2V617F1 HPCs.32,40 We have
also reported that JAK2 inhibitors only affect a subpopulation of MF
HPCs, while sparing MF HSCs.32 The inability of such agents to
affect malignant HSCs likely explains why the use of JAK1/2
inhibitors is associated with disease palliation.

Recently, clinical studies of imetelstat have demonstrated possible
disease-modifying activity in a subset of patients with MF.25

Using in vitro HPC assays and in vivo HSC assays, we have
examined the effects of imetelstat on primary MF HSCs/HPCs.
Treatment with imetelstat resulted in the depletion of MF myeloid
progenitors but also selectively affected the malignant SRCs
irrespective of their mutational status. By contrast, treatment of
normal CD341 cells with imetelstat in an identical fashion did
not lead to inhibition of normal hematopoiesis. These data
suggest that imetelstat might be capable of selectively depleting
malignant MF HSCs/HPCs and sparing the reservoir of normal
HSCs present in these MF spleens. Therefore, the clinical
beneficial effects of imetelstat observed in the published clinical
trials might be because of the differential sensitivity between MF and
normal HSCs/HPCs. A similar therapeutic window for imetelstat has
also been recently demonstrated by Bruedigam et al using AML
xenograft models in which robust efficacy of imetelstat against AML
cells was documented while normal myeloid and HSCs were largely
spared.19

Imetelstat treatments have resulted in clinical and molecular
responses in a subset of ET and MF patients.24,25 However, in these
2 clinical trials, it was noted that initial telomere length was not
predictive of clinical responses, and that significant changes were
not observed between baseline and posttreatment telomere length
among patients with MF who had a clinical response, suggesting
that telomere shortening was not the primary mechanism un-
derlying the beneficial effects of imetelstat. Moreover, both studies
documented clinically significant adverse effects associated with
imetelstat therapy including hepatotoxicity, myelosuppression, and
bleeding tendencies. Thrombocytopenia has been one of the major
dose-limiting toxicities associated with imetelstat administration.21,25,41

Many have suggested that imetelstat’s actions in MF and ET patients
were because of off-target effects.42 In order to more precisely
understand the drug’s mechanism of action, we performed in vitro

and in vivo assays with parallel treatments including imetelstat,
vehicle alone, and MM, which possesses the same lipid-conjugated
thiophosphoramidate chemistry as imetelstat but is unable to
hybridize to hTR. Such comparison treatments are not possible to
perform during clinical trials involving patients. We, however, did
observe that treatment with MM at a dose and schedule used
that did not inhibit normal human SRCs did reduce MF SRCs by
50% with CD341 cells from 2 of 3 different MF patients studied
(Figures 3 and 4). Using a patient-derived xenograft (PDX) model,
treatment with imetelstat led to greater depletion or elimination of MF
SRCs but not their normal counterparts (Figure 4B-C), and imetelstat
was capable of eliminating MF HSCs that were capable of repopulating
secondary hosts (Figure 4D-E). Notably, these observations in the MF
PDX model were made 3 months after the imetelstat treatment had
been discontinued. These data indicate that imetelstat had a
profound and sustained effect on MF HSCs. Furthermore, we
observed that imetelstat suppressed TA of MF CD341 cells and
induced greater degrees of their apoptosis. In addition, the telomere
length of MF stem and progenitor cells was shorter (23) as
compared with their normal counterparts, which might further
increase their sensitivity to imetelstat treatment. Taken together,
these results provide direct evidence that inhibitory actions of
imetelstat observed in vivo in MFHSCs/HPCs are attributable at least
in part to on-target effects.

Our in vitro and in vivo studies have also demonstrated that the
inhibitory effects of imetelstat on MF HSCs/HPCs occurred irrespec-
tive of the patient’s driver mutation. However, recent clinical studies
have indicated that responses occurred in 27% of MF patients with
a JAK2 mutation but not in patients that lacked this mutation.25 By
contrast, Baerlocher et al revealed that imetelstat therapy was
capable of reducing the driver mutation allele burden of ET patients
when these patients were treated in a clinical trial. Our findings
suggest that imetelstat was active in MF patients irrespective of the
driver mutational status (supplemental Figure 1; Figure 4B-C).
Clearly limited numbers of patients were evaluated in this study and
the clinical trials conducted by Tefferi et al and Baerlocher et al.
Larger numbers of patients with different driver mutations should be
studied to resolve this issue. The use of a PDX model to study the
effects of MF HSCs depleting agents appears to be a valuable
method with which to evaluate the effects of therapeutic agents
against MF and normal hematopoiesis.

Our in vivo studies demonstrated that reduced numbers of normal
hCD451CD41a1 mature megakaryocytes were observed in mice
transplanted with CB CD341 cells from 2 out of 3 pooled samples
transplanted 3 months after the discontinuation of imetelstat
treatment (30 mg/kg) (supplemental Figure 2), whereas normal
HSCs/HPCs were modestly affected (Figure 3B-C). Although the
inhibitory effect of imetelstat on MF megakaryogenesis was not
able to be evaluated because no hCD451CD41a1 cells were
generated in mice transplanted with splenic CD341 cells from
any of the 3 MF patients studied, our findings from the in vivo
studies with normal CD341 cells suggest that the high doses of
imetelstat might affect platelet biogenesis, which would eventu-
ally lead to thrombocytopenia in patients. These findings are
consistent with those previously reported by Iancu-Rubin et al.
Using a well-established system of ex vivo megakaryopoiesis, they
demonstrated that imetelestat treatment affected normal mega-
karyocyte development by exclusively delaying maturation of MK
precursor cells.43
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Figure 6. Imetelstat induces apoptosis of MF but not normal CD341 cells. (A,D) Representative FACS plots showing the percentage of CB (A) or MF (D) CD341 cells
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MM (7.5 mM). *P , .05; **P , .01. MF and CB: n each 5 4.
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In conclusion, imetelstat is capable of selectively depleting
malignant HSCs/HPCs from patients with MF by inhibiting TA
and inducing apoptosis, which might account for the clinical
benefits reported in the phase 1/2 studies in MPN patients. What
is remarkable about our findings is the persistence of the
depletion of the MF HSCs for at least 3 months after therapy was
completed. A phase 2 trial of imetelstat therapy in MF patients
has been performed at multiple institutions, and the outcome of
this study is eagerly awaited. Clearly from our in vivo studies,
the intensity of the schedule of administration plays a major
determinant role in its efficacy and possible toxicity. Further
attention to the dose and schedule of administration of imetelstat
might be needed in order to translate the effects of depleting MF
HSCs that we have demonstrated to a clinical trial.
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